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Abstract

The non-axisymmetric shapes of a rotating drop in an immiscible system have been studied.
Five hasic families of shap=3 (axisymmetric, two-lobed, three-lobed, four-lobed, and
toroidal) have been obsarved. The sequence (axisymmetric + two-lobed + three-lobed +
four-lobed + toroidal) seems to be linked to increasing spin-up velocity. For the axisym-
metric case, direct comparisons of experiments with the theory of a free rotating drop were
surprisingly good — the equatorial area differs from theory by only 30%. Furthermore, the
non-axisymmetric shapes are in good qualitative agreement with the theory, although the
theory does not address the presence of an outer fluid.

Introduction

This paper describes the investigations of the dynamics of a rotating ligquid mass under
the influence of surface tension.

A large (v15-cc) viscous liquid drop is formed around a disc and shaft in a tank contain-
ing a much less viscous mixture having the same density as the drop. This supporting
liguid and the drop are immiscible. If the shaft and disc were not present, the drop would
float freely in the surrounding medium and assume the shape of a sphere. With the drop
attached and initially centered about the disc, the shaft and disc are set into rotation
almost impulsively, reaching a final steady angular velocity within one-half to two revolu-
tions. The drop deforms under rotation and develops into a variety of shapes depending on
the shaft velocity. The process of spin-up, development, and decay (or fracture) to some
final shape was common to all runs.

In this system, gravity is diminished at the expense of introducing a supporting liquid
which is viscous and which may be entrained by the motion of the drop, thereby allowing
angular momentum to be transferred from the drop. Nevertheless, compariszon of this experi-
ment's results to the theory of free rotating liquid drops is prompted by the fact that
several novel families of drop shapes have been observed.

It is important to recognize that exiscting theory deals mainly with equilibrium shapes
and their stability, while the drop in this experiment is undergoing a far mcre complicated
process. The shape of a liquid drop spun on a shaft and supported by another liquid is
very much a dynamical problem. A proper understanding of the results will only come with a
dynamical analysis which succeeds in explaining the growth and decay with time of the
various drop shapes.

Theory

The theory of the equilibrium shapes of rotating fluids began with investigations by
Wewton on the shape of the rotating earth, and the extensive theory that ensued was that of
a free fluid neld together by self-gravitation. An equilibrium figure for rotating liquid
drops held together by surface tension was not demonstrated until more than seventy years

later Yhen Rayleigh(l investigated droplets symmetric about the rotation axis (see also @
Appell 2)). The stability of the simple axisymmetric shapes awaited study by Chandrasekhar .

Swiatecki{*) fits the problem of a liguid drop held together by surface tension into a
broader scheme in which fluid masses may, in addition to having surface tension, be self-
gravitating and/or posses a uniform density of electric charge. The astrophysical problem
of the stability of rotating, self-gravitating stellar masses, and the problem of the
fissionability of rotating, uniformly-charged "liquid drop" nuclei in nuclear physics, are
thus unified with the problem of equilibrium shapes and stability of ordinary liquid drops.

Confining discussion to the case of surface tension forces only, it it necessary to de-
fine some of the parameters used to describe a free liquid drop in solid body rotation.
The "free" drop is actually assumed to be contained within another fluid (for example, an
atmosphere of gas) which rotates at th: cvame angular velocity. The drop has density pp and
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rotates with argnlar velocity @. The outer fluid has density PpsPp: The equilibrium shape
of the drop must satisfy the equatior '°)

1 2 2 -
tp, + 380 & r, =0 Vn, (1)

subject to the constraint that the drop have a fixed volume. Ap =Pp - Pp  is the dif-
ference in pressures on the axis of rotation inside and outside °the °drop,® 4p = p - PE
is the density difference, r, is the radius perpendicular to the axis of rotation agd
extending to the drop's surf&ce, o is the interfacial tension, and n is nomal to the surface
(-1/2 v-n is the local mean curvature).

If the density difference 4p is zero, the effect of rotation (i.e., the centrifugal term
(1/2) 8p02r,2) is completely removed and the shape satisfying Equation (1) would be a per-
fect sphere. In this experiment, however, the drop was rotated differentially with respect
to the outer fluid, giving rise to the analogous centrifugal term (1/2)p(aq)2r;2; this
approach must suffer the effects of viscous drag and entrainment of the outer fluid. Some
basis for comparison with the “"free" drop system is preserved by making the outer fluid two
orders of magnitude less viscous than the drop,and the experimental time short. Thus, a
minimum amount of angular momentum transfers across the interface during the critical part
of the experiment.

Returning to the free drop theory: Brown(s)
form

rewrites Fquation (1) in a dimensionless
ry 2
a

o]

' (2)

Ha =K+ 2 I
]

wnere H = 1/2v-n is the local mean curvature, a, is the -sadius of a sphere having the same
volume as the drop, and the parameters I and K are the rotational bond number and dimen-
sionless reference.pressure defined by:
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R T (3)
ip_ a
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K:T - (4)

Tne axisymmetric and non-axisymmetraic sequences excluding toroidal shapes may also be
represented by a plot of the normalized eguatorial area against L. (Figure 1).
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Figure 1. Calculated Equilibrium Shapes (from data_reported b{
Brown(s), supplemented by Chandrasekhar 3) and Ross{7)).
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Experiment
The immiscible tank (see Figure 2) in which the drop is buoyantly supported and rotated
consists of a Lucite cylinder which in turn is contained in a cubical outer tank. Cylin-
drical symmetry about the axis of rotation is thus obtained while lens-like distortion of
the drop inside the cylindrical tank is minimized by the parallel-sided geometry of the
outer tank and the water circulating between it and the inner tank.

The circulating water is pumped into the system from a constant-temperature bath with a
15-liter capacity. By this means we are able to control the temperature of the system to
within .01°C or better, such control is one of the most critical factors in the performance
of the experiment.

The fluids we used in this exjeriment are silicone oil (Dow Corning 200,100
centistoke) for the drop, and a 3 to 1 water/methanol mixture for the host. The physical
properties of the mixture are highly dependent on the temperature. Therefore, the equili-
brium positions of the drop are extremely sensitive to the temperature gradient as shown in
Figure 3.
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Figure 2. Immiscible System Apparatus
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Figure 3. Temperature Profile of the Neutral Buoyancy
Tank (Measurements made by Tom Chuh).
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The shapes of rotating spheroids and the fluid flows are recorded on a camera (Milliken
DBM-55) and digitized on a Vanguard Motion Analyzer. The flow visualization for inside the
drop is accomplished by forming tracer particles out of the water/methanol mixture of dif-
ferent densities and vice versa for f£low outside the drop.

Results and Discussion

Five basic families of shapes are observedf7'8) They are axisymmetric, two-lobed,
three-lobed, four-lobed, and toroidal. Additionally, the off-axis single lobe is the final
shape for all experimental runs except those in which the drop undergoes fracture. These
shapes are shown in Figures 4-10.

Apart from the axisymmetric shapes at slow rotation rates, the three-lobed family was
the easiest to obtain. This fact was due in part to the particular drop volumes and shaft
dimensions used in this experiment. The ease with which three-lobed shapes are generated
is nevertheless remarkable; even in an early, very crude l/4-scale version of the experi-
ment, three-lobed shapes were readily obtained.

Two-lobed shapes, which develcp for slower shaft velocitie: (<2 rps), may be harder to
obtain because the decay processes which cause the drop to form into an asymmetric single
lobe may set in before the drop can develop symmetric lobes. Four-lobed shapes, on the
other hand, are obtained at generally higher shaft velocities (+4 rps) than the three-lobed
shapes; when asymmetries develop in the drop at these angular velocities, fracture usually
results.

During the decay of higher non-axisymmetric modes, one-lobe generally rotates faster
than tne others, eventually catching up and joining with the lobe preceding it. Thus,
three converge into two and two into one. This is not surprising; the mass of the drop is
never equally distributed among the lobes; so one lobe is smaller and suffers less drag
by the surrounding fluid. The presence of drag is immediately apparent from the pinwheel
appearance of all of the lobed shapes, with the lobes curving backwards against the dir-
ection of rotation.

A further effect, attributed to the motion of the outer fluid, appears in many runs in
which two- and three-lobed shapes are produced; in the course of the drop's development,
the drop rises and becomes sessile on top of the disc (i.e., it only contacts the upper
surface of the disc and shaft). Three-lobes decay to two-lobes which are sessile (Figure
13) and often persist for many seconds before decaying to a single lobe (also sessile).
This rising of the drop occurs even when the level of exact density matching is below the
disc by, for example, two centimeters. Furthermore, above a rather well-defined shaft vel-
ocity midway in the range of velocities producing three-lobed shapes, a different effect
occurs. The three-lobed drop still decays to a two-lobed one but with one lobe above the
disc and the other below, i.e., the drop is tilted (Figure 14). This appears to be a very
stable geometry which can persist for minutes.

Only a few instances of the toroidal shape have been observed with this system. Never-
theless, striking examples have been photographed of the formation of a torus and its sub-
sequent highly symmetric fracture into three or four large drops and a corresponding number
of small satellite drops (Figures 10 through 12). The sequence (axisymmetric - two lobed -
three lobed - four lobed - toroidal) seems to be linked to increasing spin-up velocity.
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Figure o. Axisymmetrix Biconcave Figure 7. Two-lobed shape (Shaft
Drop (Shaft angular velocity = 1.0 rps) angular velocity = 1.8 rps).
drop is still spinning up)
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Figure 8. Three-lobed Shape Figure 9. Four-lobed 3Shape
(Shaft angular velocity = 2.0 rps) {3haft angular velocity = 3.8 rps)

Figure 10. Torus (Shaft angular Figure 11, Break Up of Torus
velocity = 4.8 rps) (Shaft is not rotating)
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The compari%onsbetween the shapes that we observed and the calculations by Brown(sz
Chandrasekhar(3), and Ross(7) are given in the following section.

A. Axisymmetric shape

The quantities which are determined for the axisymmetric shapes are a, the egquatorial
radius of the rotating drop, and 2, the drop's angular velocity. From a the normalized
cross-sectional area A' = ra?/a 2 is calculated,while g yields the dimensionless parameter
L, p is the density of the oil 8nd ¢ ie the interfacial tension between the oil and mixture.
a, is computed from the calculated drop volume. The experimental axisymmetric values are
determined from the maximum drop deformation for a given rotation velocity. The experi-
mental values are presented in Figure 16. As I increases, the axisymmetric shapes become
less stable with respect to the n=l perturbation. Thus, no reliable data are available be-
yond the region where [ = 0.4.
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Figure 16. Experimental Results for Slowly Rotating Axisymmetric

Drops. Theoretical Curve From Free Drop Calculations.3'5'6
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Figure 18. A' versus I for a Two-Lobe Run. Figure 19. A' versus I for Three Lobe Run.
(A' is the normalized
equatcrial area and 7 is pro-
portional to the square of the
angular velocity).
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3. Non-axisymmetric shapes

Figure 17 shows velocity-profile data fo.r a three-lobed shape. The existence >f shear
close to the disc is clearly demonstrated. It is also seen, that at a position away from
the disc where 90 percent of the mass is located, a reasonably constant angular velocity
exists. It is the measurement of this wvelocity which serves as (i value for determining I
for a given drop shape. However, the jurtification of this proc-nure is likely to break
down during the initial spin up of the irop.

Figures 18-20 show graphs of the results of A/a,” versus . fr.- the drops which developen
to two-lobed, three-lobed, and four-lcbed shapes.

The direction in which the A' versus ! graphs was trave . . time is indicated on each
graph. In each run, the drop remains axisymmetric for a ti, © ior to developing into its
lobed shape.

By looking at the A'-versus-I graphs of the three- and four-lobed runs, it can be seen
that the curves occupy the same domain. This fact suggests the possibility that bifurcation
20ints for the four-lobed and three-lobed shapes are close, and the three-lobed shape is
more stable. As a result, the three-lobed shape occurred more fraquently than the four-
lobed shape.

The four-lobed curve of A' versus I has a rebound that is either nonaxistent or not as
profound in the three- and two-lcbed runs.

In all runs, the angular momen*um increases initially, reaches a peak, and then decreases.
The shaft angular velocity is ~.astant in the critical region, before and after the lobes
Lave fully developed. (See Figure 21).

CONCLUSIONS

Shapes of a rotating sphercid, have been observed and recorded in this experiment. These
include the flattening of slowly rotating drops and the generation of toroidal and lobed
shapes at higher rotation rates. Using data recorded on movie film, the development and
decay of the rotating shapes were studied for the first time. Tre neutrally buoyant tracer
droplets allowed us to study the dynamics of the behavior, the secondary flow generated by
the rotation, the interaction between the drop and the host liquid, and the coupling between
the shaft and disc and the drop.

For slowly rotating axisymmetric drops, direct comparisons of experiment with the theory
of a free rotating drop were possible. The agreement was surprisingly good; the qualitative
shape of the c¢guatorial-area-versus-f curves were similar, only differing from theory by 30%.
This is remarkable because the theory does not address the presence of an outer fluid. ‘'he
generation and study of axisymmetric equilibrium shapes for higher rotation rates is diffi-
cult, pecause of the presence of the more stable off-axis sinqgle lobed shape. This mech-
anism, axisymmetric shapes decay into single looed snape, prohibited us from extracting
from the data the exact location of the bifurcation points vetwe2en families of equilibrium
shapes.

When generating n > . lobed Arops in a controlled manner, prima ily two- and three-lobed
shapes were obtained. The latter had not been observed before. The study of equilibrium
configurations of these lobed shajes is made aifficult by the presence of the outer fluid;
as soon as the lobes occur, the interaction between the drop and the hosc liguid increases
significantly and generates large secondary flows. The accelerated transfer of angular
momentum from the drop in the lobed configurations gives rise to decay routes in which one
lobe glows ard is absorbed by the one trailing it; this process coutinues until there is
only an arm left. Thers were two excentional types of decay in which either the whole drop
would lift up {(independently of the neutral buoyancy level) and become setsile on the disc,
or would form a slanted drop; ‘n both of these two cases, the shapes were verv astabie and
long-lived. The behavior of lobed shajes was not easily compared tn the free drop theory.
The study of the angular velocities and momenta demonstrated that the develnpment of the
various lobed shcyes takes similar paths, but no evidence was found for the location of
branch points between axisymmetric and triaxial behavijor.

At present, no framework exists for duacribing the dynamics of a drop rotating in an-

other liguid., It is the authors' hope that tie varicus phenomena cbserved and described
in the course of this work wili stimulate one.
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